
opczn CI~(?IC! r 11/1/1 ~
qazcz~tcz ~0~

Fourth Edition Volume 1, Nu-mber 4 September-October 1982

THE QUARK CATALYST FOR THE APPLE ///

by

ALLAN M. BLOOM, PhD CDP

Introduction

The Quark Catalyst for the Apple /// {$149 from Quark Engineering, 1433
Williams, Suite 1102, Denver CO 80218, 303-399-1096) is billed as a utility
allowing you to "boot from your hard disk." Quark's advertising goes on to
say that there is no longer a need to swap disks and re-boot when changing
programs and interpreters, that "practically all your programs can be put on
the hard disk." The Catalyst becomes the boot diskette and other programs and
interpreters are initiated from Catalyst's menus. Further, with a spooler -­
such as Quark's Discourse , you can spool a file for printing and switch to
another environment immediately, without losing the spool file. To conclude
the series of Quark's advertising claims, "you will never need to shuffle
floppy disks again. You can lock your copy of Word Juggler, Visicalc, etc. in
a vault for safekeeping."

For those of us with ProFile, the Profile manual's instructions {Appendix
B) on setting up the Pascal Language System on the hard disk are something of
a boon -- requiring only a single PROFILEPASCAL boot diskette to initiate the
system. However, it really doesn't take much of a SOS.DRIVER or
SYSTEM.LIBRARY -- both of which must be on the boot diskette -- to get one
cramped for workspace for the SYSTEM.WRK.TEXT and SYSTEM.WRK.CODE files.
Both, again, must be on the boot diskette. In program development, relief
from such a nuisance could be worth the purchase price all by itself. I would
suspect that is the primary reason that Catalyst is selling faster than Quark
can photocopy its User Manual. For some odd reason, Quark's advertisements
do not show all the benefits that its package gives.

- Continued Inside -

------------- or1q1nal applcz /// rs

Original Apple lllrs

CLUB INFORMATION

MEETINGS

Meetings
Wednesday
the Board

are held at 7:30 PM on the third
of each month. The location is

Room of the California Bar
Association offices at 555 Franklin St.
San Francisco.

MEMBERSHIP

Annual membership
date application
payable to the
be mailed to the

dues are $25 from the
received. Your check

Original Apple 1//rs may
address below.

OPEN APPLE GAZETTE POLICY

All manuscripts, photographs, and other
materials are submitted free and released
for publication. They become the
property of the Original Apple ///rs and
the Open Apple Gazette. Authors should
clearly mark all material submitted for
publication so that credit may be given.
The publishers/editors do not necessarily
agree with, nor stand responsible for,
oplnlons expressed or implied by other
than themselves in this publication.
The Original Apple ///rs is a non-profit
organization comprised of, and supported
by, Apple /// owners and users. The
Original Apple ///rs is run by volunteer
officers and committees, and the club
endeavors to aid other Apple users
through this educational publication
"OPEN APPLE GAZETTE". Address all
inquiries to: Original Apple ///rs, P. 0.
Box 813, San Francisco, CA 94101.

REPRINT POLICY

All articles appearing in the Open Apple
Gazette not copywrited by the author may
be reprinted by another non-profit Apple
user group so long as proper credit is
given to both the Open Apple Gazette and
the author. Proper credit is defined as
article title, author, and the words
"Printed from VOL X, NO Y of the Open
Apple Gazette." Permission to reprint a
copywrited article may be obtained by
writing to the author c/o the Original
Apple ///rs.

2

OFFICERS

PRESIDENT Don Norris (415)
673-7635

VICE PRESIDENT Kent Hockabout (415)
521-1771

TREASURER Julia Amaral

SECRETARY Charles Coles (415)
386-8623

CONSULTANTS Randy Fields
Ken Silverman

Ill

ARTICLE SUBMISSION POLICY

The Open Apple Gazette welcomes any and
all articles dealing with the Apple /II
Computer and its associated hardware and
software. Articles may be submitted
doublespaced and typewritten, or on the
APPLE WRITER/// word processor.
We will send your disk back to you as
soon as we output the article on our
printer.

Public Domain Software for the Ill

Public domain software for the Apple][
was undoubtedly one of the primary
reasons for its success. This software
enabled owners to learn more about their
machines and how to use them profitably.
Public domain software for the ///has
been slow in coming but here are some of
the first that are available. The
Applecon program from Apple Computer Inc.
will greatly add to the library of public
domain software for the ///. You can
help with this by sending us programs you
have converted to or written for the///.

Applecon from Apple Computer Inc.

Applecon is a new utility for the Apple
Ill which converts Applesoft BASIC
programs to Apple /// Business BASIC
programs to the extent that they can be
machine converted. This program will not
convert any copy protected programs or
diskettes. This utility will take an
Applesoft (Apple II) program and move it
up to SOS and into Apple Business BASIC
and then will make the proper changes.
Those lines it cannot convert directly

into Business BASIC will be flagged into
a REM statement for you to correct. The
disk comes with several pages of
documentation on the disk in a text file.
The file can be read by Apple Writer Ill,
or you can output it via the Pascal
System.

File Cabinet Ill

This is a small general purpose data base
management system written in Business
BASIC. The use of File Cabinet Ill is
simple and most of it is self
documenting. File Cabinet provides a
means of interactively defining data
files, entering data, sorting, retrieving
records containing specific data,
deleting records, and printing reports.
Because all of the data in File Cabinet
is memory resident the size of the data
base is limited to a relatively small
amount but the handling of this data is
very fast.

DOS to SOS text File converter.

This program enables you to move DOS 3.3
text files to SOS. It is useful in
moving VisiCalc Models from the][to the
111. If you own Apple Writer the Apple
Writer Utility diskette already will do
this for you.

These diskettes
for $8.50 each.
Canadian
postage,
postage.
the:

are avai~able to members
Non Members $10.00.

add $ 1.00 for Residents
add $2.00
Make your

for other foreign
checks payable to

Original Apple lllrs
P. 0. Box 813
San Francisco, CA
94101

Back Issues

Open Apple Gazette
Volume 1 Number 1
Volume 1 Number 2
Volume 1 Number 3
Mail requests for

Open Apple Gazette
P.O. Box 813

$ 3.00
$ 4.00
$ 4.00

back issues to:

San Francisco 94101

- Ill -

CATALYST

Continued

Less surprisingly, the advertisements do
not mention the drawbacks of the program
product, and the product's documentation
is less than perfect. This article
presents one user's experience with
implementing the Catalyst, both the good
and the bad. Not to keep you, gentle
reader, in suspense any longer than
necessary, I believe that Catalyst is, on
balance, a superior product. I recommend
it to any serious Apple/// programmer.

This article begins with an examination of
the faults that seem to exist in the
product and in its advertising and
documentation. There follows an entry
about the idiosyncracities found in
operating systems -- not a complete set,
alas -- under Catalyst as opposed to in a
stand-alone environment. While it may be
unfashionable in this day of criticism's
being viewed as negative, I close with a
rather unusual number of hosannnahs. As I
said, I like the product.

Pre-Purchase Caveats

The advertised list price of Catalyst is
$149. If you've no truck with ordering
from your friendly local retail dealer,_
Quark is quite willing to sell direct at
the same price, no shipping or handling
charge. In my case, however, the price
actually came closer to $1,149. One thing
that the advertisements don't tell you is
that a 256K machine is necessary to get
the full benefit of the product. With
Catalyst, all SOS drivers that you may
ever need must be in memory, in addition
to Catalyst itself. With a 128K machine,
user work1ng storage is a bit cramped. For
example, SYSTEM UTILITIES cannot run under
Catalyst in a 128K machine and must be
separately booted. Since the ///'s are now
shipped with 256K, that is certainly no
problem to new purchasers. I had planned
to upgrade my memory anyway, though not
immediately, so my only real loss was a
few months of savings account interest.
Others in different circumstances could
feel a bit sandbagged.

If you have a 128K machine, and the
interest/ability to upgrade to 256K, I

3

suggest ordering the memory at least
coincidental to ordering Catalyst. My
friendly local dealer's promise of
two-days delivery of the memory board was
off by an order of magnitude. If you don't
wish to upgrade immediately, add $40 to
the real purchase price -- the cost of
replacing your Catalyst diskette ~nd its
backup. Once configured, there is no going
back. If you don't mind losing the
available user memory, you might best
re-consider your purchase decision. There
could well be sufficient nuisance value to
make $149 less than cost effective.

A second caveat arises from Catalyst's
ability to handle even copy-protected
disks. The advertisements make no mention
of the fact that protected packages -­
Visicalc, Word Juggler, Applewriter Ill.
etc -- are useless for anything else after
Catalyst has taken them unto its bosom. To
quote page 1-1 of the
Catalyst User's Manual. "Catalyst wi 11
permanently lock these disks to itself.
The original disks will no longer be
bootable. They will also not be copyable
by any other catalyst." Be prepared to
spend the money to replace any
copy-protected diskette that you wish to
run under Catalyst.

As a last caveat, try not to be any more
surprised than absolutely necessary that
your particular application does not fall
under the umbrella of "practically all
your programs can be put on the hard
disk." Your 1981 version of
Applewriter Ill does not fall into the
"almost all" category. Your hard disk that
is not a ProFile isn't covered, either.
The former 1s an insurmountable obstacle.
The latter requires at least consultation
with Quark.

Surviving the User Manual

The installation instructions END, of all
the dumb things, with a short section
titled "BACKING UP YOUR HARD DISK." If I
might make a suggestion, keyed to dolts
like me, the Catalyst installation
instructions should BEGIN with

4

BACK UP ANYTHING ON PROFILE THAT YOU'RE
FOND OF!

recommend that bit of advice to anyone
installing Catalyst, if for no other
reason than a deep respect for Murphy's

Law. I don't know what I did wrong, but my
ProFile directory was damaged after the
first installation pass. It was not badly
enough damaged to prevent my copying of
everything that I absolutely had to onto
diskette, but I was in abject terror for a
while. Much like a collision at sea,
breaking a Profile directory can ruin your
whole day.

My next-to-last quibble relates to
step 16 of Catalyst installation
procedures on page 2-2 of the manual.
Instruction 16 states "If you have a
serial printer, skip to step 29," There
follow a set of instructions for
installing the driver for a parallel
printer. One should "skip to step 29" only
if his or her serial printer is attached
to the built-in RS232C interface and uses
.PRINTER or .QUME as the SOS driver. My
printer is serial, and it is a Qume, but
it is attached to an Apple][Super Serial
Card and driven by SERIAL.X.DRIVER. I
can t imagine how I missed tripping myself
up on that one. I certainly stubbed my toe
on everything else. Others may be
sandbagged.

My last quibble is related to the
real or apparent typos in the manual that
I thought you might like to know about.
They are not many, but they are
significant when the manual states (page
2-1) "even the sophisticated user should
follow these procedures to the letter."

1. Page 2-5: Setup instructions 5-6 are
duplicated in instructions
9-10.

2. Page 2-22: Instruction 17 is "Change
the name of the
SYSTEM.STAR.LIB file to

3. Page 3-6:
SYSTEM.STAR.LIB."
Instruction 6 ends with
"Not all interpreters this
prefix setting."

I remain convinced that glitch 1 was
responsible for my blowing the ProFile
directory. Follow steps 9-10 at your
peri 1.

Installation Pitfall

On to a more substantive problem with
product installation. Catalyst has two
menus -- the Catalyst menu 1tself and one
for application programs that you might
wish to run under either Basic or Pascal.
Both sets of menu entries (named INTERPS

and x.MENU, respectively) can be added to
and edited. It would be awfully friendly
if Quark could add some sort of write
protection flag to the entries in the
INTERPS and MENU files. The Catalyst Edit,
Sys Reboot, and Menu Editor subfiles are
necessary to the system. They can be as
freely deleted as any user-added subfile.
Being perhaps the perfect system tester,
and an almost perfect dummy, I deleted
Catalyst Edit. Bless them for telling us
the format of INTERPS file entries
(Appendix C) and for designing INTERPS as
an ASCII file that Pascal can edit. Rather
than re-initializing INTERPS from the
Catalyst backup diskette and regenerating
the user entries, I just noted the
Catalyst Edit entries on the backup
d1skette and used Pascal's editor to
replace the deleted subfile in the on-line
I NTERPS file.

It is obscene to not write-protect
necessary files. Under Catalyst 1.0,
however, you must pay attent1on to what
subfiles you are editing and to where in
the editing process you are. Beware .

Wierd Things With Mail List Manager

The naming of section subtitles is an art
form. The above is dissatisfying, but I'm
at a loss to come up with anything that
better expresses the particular situation.
Very wierd things happen with Mail List
Manager (Version 1.0) under Catalyst.
Upon initiation from the catalyst menu,
the program announces that it "can't find
MLMSET." This is a baldfaced lie. When I
booted a copy of MLM without MLMSET, the
same message appeared, for real. The
screen sure looked funny, too. I wonder
why running under Catalyst causes the
phoney message?

A pleasant surprise, once I figured out
what was going on, is that MLM 1.0
renumbers the diskette drives . The
internal drive becomes .D2, the first
external drive becomes .D3, etc. Once one
knows about it, the situation is
delightful -- effectively having an extra
external drive for MLM data files. Unless,
of course, one has the full complement of
drvies already. Rather interestingly,
MLM 1.0 reads from and writes to my
"phantom" .D3 without that drive being
configured into the system, but it will
only initialize an MLM volume on the
drive if I lie to th~ystem Configuration
Program and tell it that I have 3 Disk

Ill drives.

Access Ill Rumor Debunked

A colleague indicated that he'd heard
stories of insurmountable difficulties
with installing Access Ill under Calalyst.
I had no problems at all, even in
translating my one-step kluge '(a buggered
SETPREFIX not only setting the prefix to
.PROFILE, but also automatically
initiating ACCESS3 via chaining) to run
under Catalyst. The rumor appears
baseless.

Hosannahs

I've discussed the drawbacks and pitfalls
of Catalyst to this point. It is, perhaps,
past time to discuss the product's
strengths. It is no small praise to say
that Catalyst does what it claims to do .
Every advertised feature is implemented.

I'd like to end with a few words of praise
for some features of Catalyst that the
advertising didn't ment1on and that make
life just a little more pleasant. I very
much like the boot program knowing enough
to wait for the ProFile to warm up rather
than making me re-boot. I am also fond of
the automatic date/time checking. Until
the built-in clock/calendar becomes a
reality, it is very nice to have that
reminder. Using Pascal under Catalyst is
also something of a system-saver. Onder
PROFILEPASCAL, the interpreter always
looks for a needed file on .D1, then on
.D2, before finding it on ProFile. That
is not only a nuisance. It also causes
unnecessary diskette and head wear. With
Catalyst, the situation goes away. Nice.

Summary

In summary, I'm delighted with Catalyst.
The pleasant surprises far outnumber the
unpleasant ones. The package is, however
far from idiot-proof. If you decide to g~
the $149, or $1,149, be prepared to be a
slavish follower of each and every
imnplemen~ation rule (except maybe steps
9-10 of page 2-5). Not being so can result
in many hours and dollars wasted. After
set-up, however, the beast is an absolute
dream. To date I've installed
System Utilities, Pascal, Access///,
and Applewriter 777 -- plus some of my

5

commonly used Pascal programs. Catalyst
is just as quick and easy to use as the
advertisements claim.

Editors Note: Catalyst and Discouse once
you get them operational on your Profile
are two fantastic pieces of software. The
ability to change between program~ so
easily is a real plus with the///. Next
issue we will have even more about
Catalyst and Discourse.

- Ill-

Softcard Patches

Words tar

-Install Wordstar normally for "any
terminal"; accept other defaults as
shipped from MicroPro.

-Enter DDT program

>DDT wsu.com

Fill $240-$2AF with 0

Substitute starting at $190: 41 50 50 40
45 20 2f 2f 2f 20 2e 43 4f 4e 53 4f 4c 45

Fill $1a2-$1af with $20

Substitute at $246 18 50 18 50 01 1a
$25d ff

6

Exit ddt

$26d 01 1 f
$284 01 12
$28b 01 11
$292 04 10 03 01 1c
$29b 01 1c

Save the TPA (transient program area) to a
new file, e.g. WSTEST.COM, test the
program and fix if necessary.

You should read the manual on DDT to learn
how to load a file, fill, substitute, and
save the TPA.

I believe that Wordstar is 42 hex pages
long ($4200) so you should specify 42
pages when using the SAVE command of DDT.

You can check by using the DDT command to
show length of the program just loaded,

following the LOAD command. See manual
for an example.

Dbase II -

Run the install program provided with the
Dbase package, selecting the Soroc option
for video setup.
Accept the basic defaults.
Save the file.
Run the install program again.
Select the user-defined video option.

There will be eight steps in all . You can
learn the meaning of the screen control
codes from an appendix in the back of the
Standard Sos Drivers Manual. Knowing
these codes will help keep you in synch
with the installation steps, just in case
you get lost.

Select Decimal data inputs
(1) 21,0,0- clear screen and home

sequence (3 bytes of data)
(2) 2,0,0
(3) 26,0,0 - select skeleton
(4) 28,0,0
(5) 17
(6) 18
(7) 0
(8) 17,26,0,22- 4 bytes of data
(9) 17

If you revise the inputs at any step, be
sure to re-enter the data when prompted.
If you don't, the values will be set to
zero. I. e.

ZIP needs to be installed as well, using
the ZIPIN.COM program. Use the same
screen control codes as above when
prompted, (read the Device Drivers manual
for help understanding the screen control
codes).

- Ill -

VisiCalc Template Disk no. 1

Original Apple ///rs
VisiCalc /// version of

San Francisco Apple Core
VisiCalc Templates

Converted by Don Norris & Ann Riley

The disk contains a collection of VisiCalc
templates and demos which will prove
useful to home and business users. They
were produced by the VisiCalc users group
of the San Francisco Apple Core for use on
Apple][, they have been converted to
Apple /// VisiCalc format.

This was done in several steps. First
using the Apple Writer Utilities diskette
the Apple][VisiCalc templates, which are
DOS 3.3 text files, were converted to SOS
text files. Since all labels on Apple][
VisiCalc files are UPPER CASE only, the
next step of the conversion used an Apple
Writer/// Word Processing Language
Program, to convert all of the UPPER CASE
labels to lower case. The final part
involved loading the models in to VisiCalc
///, changing to UPPER CASE any lables
which required it, such as at the
beginning of a sentence.

Catalog of VisiCalc template disk no. 1

Title

Catalog
Net Worth Worksheet
Linear Regression
Exponential Regression
Income Tax Demo
Stock Analysis
Spearman Rank
Pearson Product
Budget Template
Small Business Start Up
Net Worth Demo
Small Bus Start Demo
Comparative Shopper
Comp Shopper Demo
Avon Records Demo
Bank Reconciliation

Use

utility
household mgt
statistics
statistics
household mgt
financial
statistics
statistics
household mgt
business
demo
demo
household mgt
demo
demo
business

The disk also has the WPL routine that was
used to convert the upper case Apple][
VisiCalc characters to lower case and

instructions for its use.

A brief explanation of each template
follows bel ow:

Catalog -- This template lists and briefly
describes each template on the disk.

Net Worth Worksheet -- This template works
down the length of a few columns. It
builds from a series of worksheets to a
net worth statement by bringing the
subtotals of each asset or liability sheet
to the appropriate line in the statement.

Linear Regression-- This template
computes the slope, y intercept, &
correlation factor of 15 points listed as
x andy values on the sheet. It also
computes the predicted y value for a new x
value. You may substitute x andy values
in the sheet as you desire, insert rows,
and replicate formulas as required to
expand the sheet. The least squares
smoothing method is used in this template.

Exponential Regression -- The template is
used to smooth a series of values to
provide a curve fit by using exponential
smoothing methods. Once a series of x and
y values has been input into rows a and b,
they value for a new x value may be
computed by inputting the new x value.

Income Tax Demo -- This template uses
annual amounts which are entered into each
category listed for 1980 and 1981 to
compute the total tax burden for each
year. The window used on the bottom of the
screen is used to highlight the tax refund
and burden for each year. The federal tax
burden is computed by using a lookup table
for the 1980 tax. Another lookup table is
used to compute the 1981 tax level.

Stock Analysis -- This template allows the
user to compute the long term and short
term gains or losses of his portfolio.
Current price must be entered from the
daily paper. Number of shares, stock name,
purchase price, and commission should be
entered as stock is bought. Computation
date and date of purchase are entered as
four digit entry (year number followed by
month number- i.e. 8111) in the same cell
to allow the boolean statement in row i to
operate properly.

Spearman Rank Analysis -- This template
first computes the square of the
difference between two ranked scores. Rank
to be precomputed by the user. It then

7

8

computes the correlation of the
differences between the ranks listed.

Pearson Product-- This template computes
the Pearson Product moment coefficient
from x andy data input by the user.

Budget Template-- This template allows
the insertion of monthly income arid
expense data for a wide variety of income
and expense classifications. The user may
wish to replace or delete categories to
reflect his needs. Monthly summaries are
provided at the bottom of the sheet.

Small Business Start Up -- This template
is a straightforward template which may be
used to plan the first year's cash flow
for a small business. It may also be used
to develop budgets or examine alternate
courses of action. Cost of sales may
either be input for each month or may be
computed by inserting a formula.

Demo Net Worth
on diskette.

Demo of first template

Small Bus Demo-- Demo of small business
start up template presented above.

Comparative Shopper-- This template
allows the user to select the minimum
price for each item offered by three
different stores. He may have to travel
from store to store to obtain the absolute
lowest price or he may just select the
store with lowest store price. The @min
command is used in this template.

Comparative Shopper Demo -- This template
demos the comparative shopper presented
above.

Avon Records Demo -- This template is a
complex analysis of the profit and
business expense associated with a series
of Avon sales campaigns.

Bank Reconciliation-- This template
computes whether or not a bank statement
for a business agrees with the financial
records. It spans a number of months and
may be printed each month by the user.

Your favorite template(s) are needed for
inclusion in future VisiCalc template
disks. Please send it to the Original
Apple ///rs. It will be added to our
library as well as converted to Apple][
version and forwarded to the San Francisco
Apple Core. If your template is used on a

future template diskette, you will receive
a free template diskette.

- Ill-

Original Apple lllrs
YC Te.plates 83-1

Order your VC Templates Diskette for only
$ 12:50, which includes and handling.
Fore1gn add$ 2.00, Canadian $ 1.00.
Foreign orders should be in US Funds drawn
on a US Bank or an International Postal
Money Order payable in US Funds.

Save formatting, copying and labeling and
order a backup at the same time for only $
7.50.

Order from:
Original Apple ///rs
P.O. Box 813
San Francisco 94111

- Ill -

IDS Micro Prism Printer

User Comments

by
Barney Simonsen

I have installed with no problems an IDS
Model 480 Micro Prism Printer. It is
hooked up using an RS-232 plug and Apple
Modem Eliminator. I am using the 8-bit no
parity setting on the Apple///
configuration. I haven't extensively
explored all the features, but have
successfully used the control/escape
commands from the Apple Writer and Quick
File to adjust the print density (10 CPI,
12 CPI, 16.8 CPI) and use enhanced
printing. I have not yet tried the
graphics mode.

I look forward to reading the next
Newsletter and will try to get
communications capability to try your new
network.

- Ill -

The Third Basic

By: Taylor Pohlman
Reprinted from Softalk Magazine

Exploring Business Basic,
Part 3

Lots has happened to the Apple/// since
my last article, and I appreciate all your
comments about the articles in this
series. We'll have a chance to pick up on
some of your suggestions next month, along
with more news about the Apple///. For
now we'll continue our exploration of the
Business Basic file system as promised
last time.

After reading this article and working
with the examples, you should have a good
knowledge of the differences between the
text and data file types as well as more
information about string handling
functions and techniques.

We are going to stick with relatively
simple indexing techniques for now, but
next month we'll also cover some advanced
indexing and file access methods to give
you an idea of some of the ways that the
popular data base programs retrieve data
so rapidly.

Looking Back. The last article concluded
with an example program that showed how
the SOS file system could be used to store
and rapidly find records in a file. We
did that by using the random file access
method that SOS and Business Basic have
built in.

That technique allows file records to be
numbered from 0 to 32767 and read directly
without having to read all records from
the beginning of the file.

The example at the end of last month's
article also demonstrated that SOS uses a
special storage and indexing method that
wastes very little space in storing
records on the disk, even if they have
widely varying record numbers.

To go into further depth on this subject,
and to compare the text file type we were
working with last time to the more
mysterious data file type, it's going to
be necessary to create a more general
version of last month's program. That
example program allowed us to create a
file that contained four pieces of

information about a hypothetical parts
distribution company. The data were the
part number, description of the part,
location in which the part was stored, and
quantity on hand.

Unfortunately, the program was just
designed to make some clever points about
files, not to be really useful to parts
companies. For example, we could only
perform two functions, creating files and
adding records. Most parts companies
would want to look up parts, delete parts,
get lists of parts, and so on. This
month's version gets closer to that ideal,
without denying you some of the fun of
making your own changes. In addition,
some of the functions that the program
performs are generalized into subroutines
so that we can make changes later without
wholesale rewriting.

The New Parts Program. Well, now that
your're breathless with excitement, here's
the new version of the program:

5 HOME
7 PRINT
10 PRINT"Parts File Create and

Modify Program"
20 PRINT:PRINT"Type:"
30 PRINT" 1 to Create a parts

file":PRINT
40 PRINT" 2 to Use an existing

parts file":PRINT
49 PRINT" 9 TO Quit" :PRINT
50 PRINT:INPUT"Your selection:";a$
60 IF a$=""THEN 1000
70 a=ABS(VAL(a$))
80 ON a GOSUB 100,400
90 IF a =9 THEN 1000:ELSE 5
100 PRINT:INPUT"Name of new parts

file:";a$
110 IF a$="" THEN RETURN
120 CREATE a$, TEXT, 64
130 PRINT"Parts file";a$;"created."
140 RETURN
400 HOME
405 PRINT:INPUT"Name of existing

parts file:";a$
410 IF a$="" THEN RETURN
420 OPEN#1,a$
425 file$=a$
430 HOME
435 PRINT:PRINT"Modify Parts

File";CHR$(34);file$;CHR$(34):PR
INT

437 PRINT"Type:"
440 PRINT" 1 to add to your

parts file":PRINT
445 PRINT" 2 to delete a part

from your parts file": PRINT

9

10

450 PRINT" 3 to find a part in
your parts file": PRINT

460 PRINT" 9 to quit the modify
mode":PRINT

465 PRINT:INPUT"Your selection:";a$
467 a=ABS(VAL(a$))
470 IF a=9 OR a$=""THEN RETURN
475 ON a GOSUB 500,700,800
480 GOTO 430
500 HOME
505 PRINT:INPUT"Part number to

add:";a$
510 IF a$="" THEN RETURN
520 a=VAL(a$)
530 IFa<1 OR a>32767 OR INT(a)<>a

THEN 500
535 rec=a
540 partnum$=a$
545 PRINT:INPUT"Description:";a$
550 IF LEN(a$)>35 THEN

a$=MID$(a$,1,35)
560 desc$=a$
570 PRINT:INPUT"Location:";a$
580 IF LEN(a$)>15 THEN

a$=MID$(a$,1,15)
590 location$=a$
600 PRINT:INPUT"Quantity on

hand:";a$
610 a=O:a=VAL(a$):IF INT (a)<>a OR

a>99999 THEN 600
620 quantity$=a$
630 PRINT:PRINT"Record

is:";partnum$;"/"desc$;"/"locati
on$;"/"

640 INPUT" OK? ";a$
650 a$=MID$(a$,1,1):IF a$<>"y" AND

a$<>"Y" THEN 505
660 GOSUB 2000
665 IF erorcode=O THEN

PRINT:PRINT"Record
added.":GOSUB 995:GOTO 500

670 PRINT:INVERSE:PRINT"Record not
added, ERROR=";:NORMAL:PRINT
error code:GOSUB 995:GOTO 505

700 HOME
705 PRINT:INPUT "Part number to

Delete:";a$
710 IF a$="" THEN RETURN
715 a=VAL(a$)
720 IF a<1 OR a>32767 THEN 700
725 rec=a
730 GOSUB 1800
735 If errorcode=1 THEN PRINT:PRINT

CHR$(7); "No such part
number":GOSUB 995:GOTO 700

740 PRINT"Delete
";partnum$;"/";desc$;"/";locatio
n$; "/";quantity$;"?";

745 INPUT"";aa=MID$(a$,1,1)
750 IF a$<>"y" AND a$<>"Y" THEN

PRINT"Not deleted":GOSUB
995:GOTO 700

755 GOSUB 1900
760 PRINT:PRINT

CHR$(7);CHR$(7);"Record
deleted":GOSUB 995:GOTO 700

800 HOME:PRINT
805 INPUT"Part number to find:";a$
810 IF a$="" THEN RETURN
815 a=VAL(a$)
820 IF a<1 OR a>32767 OR INT(a)<>a

THEN 800
825 rec=a
830 GOSUB 1800
840 If errorcode=1 THEN

PRINT:PRINT"No such part
number":GOSUB 995:GOTO 800

850 PRINT:PRINT"Part number:
";partnum$

855 PRINT:PRINT"Description:
";desc$

860 PRINT:PRINT"Location:
";location$

865 PRINT:PRINT"Quantity on hand:
";quantity$

870 PRINT
890 PRINT:INPUT"Press RETURN to

continue:", a$;GOTO 800
899 REM
900 REM delay subroutine
901 REM
995 FOR i=1 TO 1000:NEXT i:RETURN
996 REM
1000 PRINT:PRINT"End of parts file

program."
1010 CLOSE
1020 END
1799 REM
1800 REM retrieve a record with

record number = "rec"
1801 REM
1805 errorcode=1
1810 ON EOF#1 RETURN
1820 DEF FN

scan(start)=INSTR(rec$,"/",start
)-start

1830 INPUT#1,rec;rec$
1835 IF rec$="" THEN RETURN
1840 pointer=1:length= FN

1850

1855

scan(pointer)

partnum$=MID$(rec$,pointer,lengt
h)

pointer=pointer+length+1:length=
FN scan(pointer)

1857 Desc$=MID$(rec$,pointer,length)
1860

1870

1875

pointer=pointer+length+1:length=
FN scan(pointer)

Location$=MID$(rec$,pointer,leng
th)

1885

pointer=pointer+length+1:length=
FN scan(pointer)

Quantity$=MID$(rec$,pointer,leng
th)

1890 errorcode=O:RETURN
1899 REM
1900 REM delete a record with record

number = "rec"
1901 REM
1905 PRINT#1,rec;""
1910 RETURN
1999 REM
2000 REM add a record with record

number = "rec"
2001 REM
2005 errorcode=O
2010

rec$=partnum$+"/"+desc$+"/"+loca
tion$+"/"+quantity$+"/"

2015 ON ERR GOTO 2040
2020 PRINT#1,rec;rec$
2030 OFF ERR :RETURN
2040 errorcode= ERR:OFF ERR:RETURN

Well, nobody said that this series
wouldn't get more interesting as we went
along!

Let's take a quick look at the changes in
this version of the program, as well as
its major features. First, as to
structure, the program looks something
like this:

5-90 Initialization and first
menu

100-140
400-480

and
500-670
700-760
800-890

Create a new parts file
Open an existing file

set up second menu
Add a record
Delete a record
Find and display a

record
900-995 Subroutine to create a

delay
1000-1020 Terminate the program

and close files
1800-1890 Subroutine to find a

record and load data values
1900-1910 Subroutine to delete a

record physically
2000-2040 Subroutine to add a

record with given data values

Note that for simplicity we have assumed a
fixed file record structure. That is, we
have hard-coded into the program the fact
that the data items in each record are
part number, description, location, and
quantity on hand.

We have also coded into the program some
restrictions as to the length of each item

(lines 550, 560, and 610).

A real data-base program would have all
this information stored in tables for more
flexibility.

For example, there is no practical way,
short of rewriting parts of the program,
to add an extra data item to the records
or change the meaning of the existing
i terns.

Obviously, the more such generalizations
we put into the program, the larger and
more complex it will be.

Our purpose is to learn something about
files first and then write the world's
greatest data-base program.

To help understand the program and check
out a few new features that make Business
Basic really handy, let's look at the
subroutines in the program.

First, e~amine the record retrieval
routine at line 1800, which is used by the
"Find" section and the "Delete" section.
We will communicate any problems
encountered in a subroutine by using the
errorcode variable, with 0 indicating no
error found.

The ON EOF statement in line 1810 will
return with "errorcode" set to 1 in the
event that the INPUT statement in line
1830 reads past the current end of file.

Line 1820 sets up a function definition
that comes in pretty handy.

The function scan uses the Basic INSTR
function to determine how many characters
there are to the next occurrence of the
"/"character.

Remember that we used the "/"character to
delimit the fields within the string
record we stored in the file. The INSTR
function returns the character position of
the string being searched for, starting
with the position given by "start."

Subtracting the starting value from the
position gives the total length of the
field. More about INSTR can be found in
the Business Basic manual. Give that
section a look, because INSTR is one of
the most useful functions you'll find.
Some other Basics may use a different name
for this function; POS is one example.

11

Line 1830 inputs the record according to
the record number "rec." After checking
for a "null" string (line 1835), lines
1840 through 1885 are responsible for
breaking up the record into its separate
fields. This is done by setting the
variable pointer to the beginning of the
field and then setting length to the
number of characters in the field, using
the scan function defined previously. The
MID$ function is then used to make the
assignment to the appropriate variable.

Study this section carefully to be sure
you see how this works. One technique to
understand routines like this is to make a
diagram of the data and work through the
statements while playing computer.

Now that the individual fields are
assigned to the proper variable, they can
be used in the calling routines (at lines
730 and 830) to display the values as
desired. Later on we are going to change
the structure of this file considerably,
and it will be handy to be able to handle
that by changing the routine at 1800
rather than making changes throughout the
program.

The delete routine at line 1900 is really
simple, just consisting of printing a null
record over a previously existing record.
As we change the file structure, this may
become much more interesting.

The add routine is also simple, consisting
(at line 2010) of packing the various
field values together using the String
Concatenation Operator (the world's
1 ongest way to refer to "+"). There is
one thing of interest, however. Note that
the ON ERR statement is used to trap any
errors which may occur in writing to the
file. We again use errorcode to
communicate that an error has occurred and
are careful to turn error trapping off
before returning to the main routine.

It would have been possible, and even
desirable, to use the ON ERR statement to
check for all errors in the program, but
the routine required to make the program
that bullet-proof would have made this
program unnecessarily long. It's probably
a good subject for a future article.

Well, now that we've been through the
major features of the program, we suggest
you enter the program and start fooling
around. As we mentioned last time, this
program was never meant to be the ultimate

12

in user friendliness or elegance of coding
style. As you add records, find, and
delete them, try to imagine ways you could
improve the way the program works or asks
for information.

Business Basic DATA files. While it's
certainly true that most files contain
data, Business Basic uses the term DATA
files in a special way. You may remember
that a TEXT file consists of strings of
characters with the carriage return
character as the terminator between
strings.

If you print a numeric variable into a
text file, it will automatically be
converted to a string value, just as is
done when printing numbers to the screen.
This sounds pretty nice, but it can cause
some real problems and inconvenience. For
example, you know that an integer variable
(which ends with the % character) occupies
two bytes of storage in memory. However,
representing the value in string format
can take up to six bytes (-32000, for
example). Add a RETURN character to
delimit it and you have up to seven bytes
to store an integer in a file.

Furthermore, it's impossible to tell
beforehand just how much space a given set
of numeric variables will take without
checking each one beforehand. This can
cause design problems for programmers. As
you can imagine, these problems are even
more acute for the long integer data type,
which can be up to nineteen digits long
but only requires 8 bytes of internal
storage.

There's another problem with using text
files that shows up only when you are
using real numbers. Reals are represented
in Business BAsic as 32-bit floating-point
quantities requiring four bytes of
internal storage. Normally, they are
displayed with six digits of precision,
and the format itself may vary
greatly-especially if the magnitude of the
number is very large or very small. In
those circumstances, Basic will display
the number in scientific notation. This
means that the output format of a real can
vary from something simple like 3.45 to
something like -1.36723E-06.

Interestingly enough, it's not so much the
space that this notation takes up that
causes the trouble but that the printed
representation of a real may not
correspond exactly to the value stored in

memory. If a number's representation is
not exact or requires more decimal places
than can be displayed, the number is
rounded before printing.

By contrast, this does not occur with
integers. Since rounding occurs during
printing, and text files are storage of
the printed format, values of real numbers
may be different in the text file than
they were in memory. A short example will
i 11 ustrate:

10 OPEN#1,"numberfile"
20 INPUT" type two numbers: "; x ,y
30 z=x*y
40 PRINT#1,1;z
50 INPUT#1,1;z1
60 IF z=z1 THEN PRINT"they

compare":GOTO 20
70 PRINT" they don't compare:

";z,z1
80 GOTO 20

Note that by printing the value to the
file with the random access method in line
40, we are able to read it back directly
in line 50. This lets us check to see if
any value change has occurred as a result
of the file operation. Try this with
values like 500 and 4.25. Everything
should go normally.

Now try a value like 3.033 and .031.
Still okay. Now try 3.031 and .031. The
result should print out appearing exactly
the same, yet the comparison in line 60
fails. If you wish, you can insert a
statement at line 75 to print out the
difference. It will be small but
obviously significant. For the real
reason the product of this number pair
fails to work, we commend you to your
local math professor or textbook on
numerical analysis.

Suffice it to say that certain real
numbers cannot be stored exactly as binary
numbers, nor can certain binary numbers be
displayed exactly in a finite number of
digits. As soon as these situations
occur, the quantities stored in the text
file will not exactly match what was
calculated in memory. Play around with
this program further. There's almost an
infinite number of combinations that will
also fail the test but appear to be equal;

You've just seen two reasons for the need,
from time to time, to store numbers in a
file in the exact form they have in
memory. Can you think of a circumstance

where you might want to do that with a
string?

Among others, if you have a string that
contains (or could contain) a return
character, the text file input statement
will terminate wherever the return occurs,
thereby losing the rest of the characters
in the string.

The key is that with DATA file format, you
can store any numeric or string quantity
without worrying about what might happen
to the information. In addition, Business
Basic adds an identifier to the front of
each item of data you store in a data
file, to indicate what kind of data it is.
This is called the data Type, and allows
you to intermix integers, reals, and
strings in any order and still read them
back correctly.

The information about the type of a
particular data item is retrieved,
astoundingly enough, by the TYPE function.
This allows a simple program to read the
contents of any data file, without having
any information about it beforehand. Much
more information about data files can be
found in your manual, and I suggest you
spend some time reviewing it.

In the meantime, let's look at what using
data files will do to the parts program I
listed at the beginning of the article.

First, we'll need to change the file type
specification on the CREATE statement at
line 120. The new line will look like
this:

120 CREATE a$, DATA,64

Since the program was fairly modular, with
the file access done in subroutines, the
other changes are minimal as well. The
idea is to store each item we used before
(part number, description, and so on) as a
separate data item in the file. Since the
part number is always a four-digit number,
we can use an integer to store that data.
Description and location are string
quantities, and quantity on hand will fit
nicely into a real value, since it's a
maximum of five digits (line 610 checks
for that).

The first subroutine to change is the one
at line 2000, which writes a record. The
new statements look like this:

2010

13

2020

partnum%=VAl(partnum$):quantity=
VAL(quantity$)

WRITE#1,rec;partnum%,desc$,locat
ion$,quantity

There, that was easy.

Note that WRITE was substituted far PRINT
since this is a data file, and instead of
packing all the strings together as we did
in the old line 2010, we simply converted
the string values to the appropriate
numeric ones.

If we had designed the program to use data
files from the beginning, we probably
would have handled that in the program's
data entry section.

Next come the changes to the subroutine
that reads a record back. Now things are
very simple. We can replace all the lines
between 1820 and 1885 with these:

1815 READ#1,rec:IF TYP(1) = 5

1820
THEN RETURN

READ#1,rec;partnum%,desc$,locati
on$, quantity

1825 IF partnum%<0 THEN RETURN
1830 partnum$=STR$(partnum%)
1840 quantity$=STR$(quantity)

That's it! Since all the items are stored
separately, there's no need to go through
the process of splitting them out of the
string record.

We must confess, however, that we really
wanted to discuss the INSTR function, and
that previous technique seemed the most
logical way to show its features. Oh,
well, it's always more fun to find an
easier way!

Two more things are of interest here.
Note that we have checked in line 1815 for
TYPE 5, which indicates end of file. This
takes care of checking for empty records.
In line 1825, we introduce a new concept.

Previously, when we wanted to delete a
record, we simply printed a null string
over the existing information. There are
times when it's useful simply to flag that
a record is deleted, not actually wipe the
information out. This allows deleted
information to be retrieved in the event
of mistakes.

Periodically another routine can be used

14

to go through the file and physically
delete the flagged records. Here, and
below in the actual delete routine, we
make the part number negative to indicate
that it's no longer an active record.

The "delete" routine now will look like
this :

1905 partnum%=-partnum%
1907

WRITE#1,rec;rec;partnum%,desc$,1
ocation$,quantity

That will write the record out with a
negative part number, which will flag it
as logically deleted.

Well, that should just about do it. In
addition to giving you several things to
try out before next time, the above
changes illustrate an important
programming fact of life. (You've been
waiting for this article to get juicy,
right?) This fact is that the more
modular your program design, the more
painless it is to make inevitable changes.
I know that isn't your favorite fact of
life, but there's nothing worse than to
stare at several thousand lines of Basic,
knowing that it has to be completely
rewritten.

Next time we'll cover some new but related
topics that will require completely
rewriting this month's program. (Just a
joke!) Actually, we'll talk about
different ways to store and retrieve
records on disk that give more flexibility
than the simple record number scheme used
so far. That should complete the effort
to make you a file expert. In addition,
Business Basic has an incredible output
formatting capability, and now that you
have learned the techniques for stori ng
data, it should be fun to go through some
tips on how to make your printouts look
like professional reports.

Until then, have fun practicing the facts
of life-programming facts, of course.

-Ill-

Beginning Business BASIC

Part 1

By Stan Guidero

This is the first in a series of articles
covering Business BASIC from the ground
up. It is for the nonprogrammer that I
write these articles. The best way to
follow these lessons is to have the Apple
Ill computer up and running with Business
BASIC.

For those who don't have BB (Business
BASIC) you may purchase it from your local
dealer as it does not come with the Apple
Ill and must be booted from disk. When
you get the BB package you will find lots
of goodies inside the box.

The program disk has a lot of Utilities
and example programs on it. You also get
one blank diskette, Apple Business BASIC
Reference Manual Volumes 1 and 2 and a
Software License Agreement. The first
thing you should do is to boot your SOS
Utility disk and back up the only copy of
Business BASIC you have.

If you're not sure how to do this, I will
give you a short lesson. First Boot your
SOS Utility by inserting the disk into the
onboard drive then hold down the CONTROL
key and press the RESET button just behind
the top of the keyboard. After the
utility program is loaded you should first
set the date. Press "D" to enter the
device handling command level, then "T" to
set the date. Press ESCAPE to return to
the menu. Now press "C" to enter the copy
mode. Place the blank that came with your
BB package into the onboard drive. If you
have a second drive, you should now place
the Apple Business BASIC disk in it, if
not you will be required to swap disks
back and forth in the onboard drive. For
now I will assume you have two drives.
Near the bottom of the screen you will see
the cursor set just before the .02 under
the prompt "Copy the volume:". If you
have two drives just press RETURN. If you
have only one drive, you will have to type
in ".01" in place of the ".02". Then
press RETURN. Two drive owners again only
press RETURN, single drive owners will
again have to type in ".01". Press
RETURN. Press RETURN again when promted
"With the new volume name:". You will be
prompted to reinsert the Utility disk back

into the inboard drive. This occurs
because the blank diskette must be
formatted. Just follow instructions of
the utility program and the computer will
do the work. After you back up your BB
disk, place it in the inboard drive and
reboot the disk with a CONTROL- RESET.

Now we're ready for our first lesson.
There are two modes that Business BASIC
can be used in. The Immediate and the
Deferred mode. First we will try some
things in the Immediate mode. I want you
to type into the Apple Ill the command NEW
followed by RETURN. This will clear the
memory of the computer so we can start
with a clean sheet. Now to clear the
screen and place the cursor in the upper
left hand corner simply type in the word
HOME then RETURN. Now type in the command
PRINT followed by 23+32. Press RETURN.
The number or answer will appear on the
next line which should be 55. We can use
just about any mathematical function such
as subtraction, multiplication, division
and some trig functions. You may use "+"
for addition, "-" for subtraction, "I" for
division and"*" for multiplication. You
may use multiple statements on a single
line.

Try this: PRINT 23+32*2-1212 Press RETURN.

The total will be 81. However, this may
not be what you wanted to do. To solve
the problem you may use parenthesis around
the functions you want done first like
this:

PRINT (23+32)*2-(1212) Press RETURN.

Now the total is 104. Parenthesis are
handled left to right first, then the rest
of the statement. Power can be used using
the caret"©". As in 23©2 .

There is a lazy way to type the PRINT
statement, and that's to use a "?" in
place of the PRINT statement. Like ?
23+32. This can also be used in program
statements in the deferred mode. We can
also print characters to the screen by
using the PRINT statement. Try this:

PRINT "HI THERE!"

Now we are going to try some things in the
deferred mode. You will be first typing a
number. you can use sequential numbers
like 1,2,3,4 , but this will leave you no
room to add statements between numbers so
you should use numbers like 10,20,30,40.

15

You will notice as we type in commands
that nothing will happen. Before typing
our first program we should clear the
memory with the command NEW. Now type in
this program:

10 PRINT "THE ANSWER IS:"
20 PRINT 23+32
30 END

To make sure the program is in memory
correctly type LIST and RETURN. Now to
activate the commands simply type RUN and
press RETURN. Your screen should look
like this:

THE ANSWER IS:
55

There are a few tricks available to you
through Business BASIC to help you format
the screen. Normally each line or
statement has a RETURN built into it.
That's why the 55 appeared on the next
line instead of following the statement.
In order to allow the answer to appear at
the end of the line we can place a
semicolon at the end of our PRINT
statement as follows.

10 PRINT "THE ANSWER IS:";

Now LIST.

As you can see we only had to retype the
line to change it. Now RUN the program.
It now should look like this:

THE ANSWER IS:55

We also have available to us a method of
using the built in TAB setting inherent in
the APPLE/// computer. Placing comas in
print statements allows us use of them.
Try this:

First type NEW.

10 PRINT "POS#1","2","3","4","5"
20 PRINT "HI";
30 PRINT "THERE"
40 PRINT "HI"
50 PRINT "THERE"
60 PRINT "BY","THERE"

LIST and RUN.

Your output should look like this:

POS#1
HITHERE
HI

16

2 3 4 5

THERE
BUY THERE

I used several examples to show print
output to the screen. The first showed
TAB positions, the next how to concatenate
(to add on to the first statement) and the
final three lines for variations. If you
take a look at line two you will notice
that HI and THERE is bunched together. To
correct this you will have to add a space
just after HI and before the close quote.
Change line 20 to read:

20 PRINT "HI " ;

Another way to use the PRINT statement is
with a variable name. A variable name is
a location in memory, we provide the name.
We can use the letter "A" to store a
number . First type NEW to remove our
previous program. Now type in this small
program.

10 LET A = 23
20 LET B = 32
30 PRINT A + B

RUN

We will cover variables later. To
continue. You can mix strings of
characters and numbers together in a print
statement.Try this.

30 PRINT "THE ANSWER IS "; A+ B

We can get really fancy.Type:

30 PRINT "The answer to ";A;" + ";B;" is:
II ;A+B

PRINT is an output statement. To input
information, we can use the statement
INPUT. Change our program this way.

10 INPUT A
20 INPUT B

Our program should look like this when you
type LIST.

10 INPUT A
20 INPUT B
30 PRINT "The answer to ",A,"+ ",B," is:
",A+ B

When you run the program you will be
prompted with a"?". The computer is
waiting for an input number. Type a
number and press RETURN. Type in a second
number and press RETURN for the second

question mark. The answer is then
displayed.

Our program is rather hard to understand.
What the heck does "?" mean any way. We
can improve our program by including a
character string in our INPUT statement.
Change lines 10 and 20 as follows.

10 INPUT "Type the first number to be
added: ";A
20 INPUT "Type the second number to be
added: ";B

Now our program is readable.

A variable may be used to store a string
but we must identify the variable name
with a type. Incidentally, you can use up
to 63 characters in a variable name.
Variable names must start with a letter.
Here are some examples of different names .

A or ANSWER Real numbers. (Floating
point i.e. 12.435)

N$ or NAME$ String

A% or ANSWER% Integer numbers. (Whole
numbers)

Numbers between -32768 and
32767

A& or ANSWER& Long integer number
Whole number)

Numbers from
-9223372036854775808

to
9223372036854775807

This ends our first session. In future
articles we will cover all of the commands
available to you in Business BASIC. Some
commands are very powerful. Next issue
will explain PRINT statements and
variables in greater detail. There after
we will learn the finer things of
programming. So for now happy
programming.

Apple Writer: A BASIC Editor

by Paul Wilson

Have you ever been frustrated when
composing a Business BASIC program because
all you have as an editing tool is the
escape-mode? Well hearken your ears to
this good news: If you have Apple Writer,
or some other means of editing a
text-file, you can use the editing
features of the program to either edit
existing BASIC programs, or create BASIC
programs. The followi ng instructions
apply to Apple Writer, but the principles
can be applied to basically any editor
which outputs a text-file.

Before we begin, a brief note on f il e
types for the uninitiated is in order .
Apple/// SOS has a number of different
file types. What this means is that
information is stored on disk in several
different formats. For example, plai n old
text, such as an Apple Writer file, i s
stored on disk character for character,
whereas BASIC programs are stored as a
special compressed code which appears
unreadable (sometime try using the
UTILITIES SYSTEM to 'copy' a BASIC program
from disk to .console). Apple Writer
files are known as ASCII or TEXT files,
depending on whether you're in Pascal,
Basic, or something else. This
information is displayed as part of the
directory, or catalog, information on the
diskette. For this exercise it is
important to be able to tell the
difference between file types, and so
included below is an equivalence chart for
file types in different systems. A disk
containing only TEXT (ASCII) files and
BASIC programs shows the following when
"cataloged" with:

Apple Writer

Pascal filer

System Utilities

BASIC

File Type
text
BASprg

Asci ifil e
Basicprog

Asci ifil e
Basicprog

text
BASIC

The trick to what I will be describing
basically involves the changing of BASIC

17

program files to Apple Writer files and
back again. The process is not
complicated, but if you feel that you can
handle a bit more complexity you can make
your programming much easier. For example
you can, using Apple Writer, write
programs completely disregarding line
numbers, then insert line numbers~after,
using Apple Writer's WPL capabilities.

As writing a program in Apple Writer is
the easiest part, I will start with it.
After booting Apple Writer type in your
program as you would if you were in BASIC,
but you can, if you want, disregard line
numbers. That is, type all your lines
without numbers at the beginning. After a
while you may need a GOTO or GOSUB
statement which references a line number
which does not yet exist. Instead of a
number, put in something easily
recognizable like***, and we will deal
with this later. Mark sections of your
program clearly with rem statements if you
want to interrupt the regular numbering
pattern and restart at numbers like 3000
or 10000. Another help is to limit
individual rem statements to about 70
characters in length as anything over this
will, when numbered and entered into
BASIC, end up over 80 characters in length
and unwanted screen wrap-around will
result.

After a preliminary or final program is
ready to test, replace all the <returns>
with "xxx" with this command:
"[F]<><>xxx<a" (see page 42 of the Apple
Writer manual). You may have to insert
"xxx" in the first line of the program.
Save this program twice with names
something like .d2/PROG.1 and .d2/PROG.A
(the dua 1 saving is to provide an
unnumbered copy of your program for future
use). Then clear the screen and enter and
save the following WPL program (the ";"
are comments which refer to the previous
1 i ne) :

ny

;clear the screen

1 . d2/prog .1

;load in .d2/PROG.1

b

;go to the beginning of the file

psX 1000

18

;set X to a starting number

loop f<xxx<(X)<

;find "xxx" and replace it with the
value X

y.

;replace and the
replacement

psx +10

II II

;increment X by 10

pgo loop

stops the next

;go back to the beginning of the loop

Save this WPL program as .d2/WPL and type
"[P] do .d2/wpl". The screen will go
blank, drives will whirr, and your program
will appear on the screen. You will
notice that, at a rate of about 2-3 per
second, the xxx's are being replaced by
numbers which keep incrementing by 10.
You can speed up this routine by inserting
the following line:

ppr [V][N][V]

; This is the same as pressing CONTROL 5
(5 on the numeric keypad)

Your screen will go blank while the WPL
routine is executing.

You may stop the line numbering at any
time by pressing the <escape> key. Then
you can save the partially numbered
program as /PROG.1 again, load the WPL
program after clearing the screen, and
reset the starting number. This can
generate very neat numbering and, with
practice, the whole process for a 100 line
program with several starts and stops
takes only about 5 minutes.

Now you must deal with all those GOTO ***
and GOSUB *** statements which you made
previously. As you now have actual line
numbers to reference, use [F]/***/ to find
the statements and the split screen
function ([Y] see page 49 of the Apple
Writer manual) to find what the line
references really should be.

With the completely numbered program saved
on disk, quit Apple Writer and boot BASIC.
Once in BASIC, type the command EXEC

.d2/prog.1 (see Apple Business BASIC -
Volume 1 page 28). Almost immediately a
whole column of)'swill appear as the
disk drive is accessed. At this point
BASIC is loading in your file as a
program. After all this stops you can
LIST your program (to make sure it's all
there) and SAVE it to disk. You will
either have to save it to a di fferent
filename, such as /PROG.BASIC, or you will
have to DELETE .d2/PROG.1 and then SAVE it
under that name. If you don't a ?TYPE
MISMATCH ERROR will occur.

This error occurs because the Apple Writer
file is a TEXT file, and a BASIC program
stored on disk is not text. It is trying
to store compressed BASIC commands as text
and it can't. Therefore you must either
use a different name, or change the file
type by deleting it and re-saving it.

The process of editing existing BASIC
programs with Apple Writer is very
similar. First you need to get a TEXT
file version of your program. This is
done in BASIC by loading in your program
and typing the following BASIC commands:

)create ".d2/prog.listing", text

; "text" specifies the file type

)open #1, ".d2/prog.listing"

)output #1

)list

)close #1

Now you have an Apple Writer editable
version of your program.

Boot Apple Writer and edit as outlined
above, keeping in mind that you need to
keep consistent line numbers, although the
actual order of the lines need not be
sequential. That is, if your program had
lines 100-1000 and 5000-6000, if you added
lines 3000-4000 it would not matter
whether they were inserted at the
beginning, middle or end of the file~
Basic would rearrange them. Another
alternative is to remove the line numbers
through the use of the Apple Writer
command "[F]<>= <><a", and then renumber
the program after the editing process.
This command searches for a <return> (>
), followed by a number of unknown
characters (=) and ending up with three
spaces, and replaces them all with a

<return>. The three spaces are something
BASIC inserts as formatting after each
1 i ne number.

This process, although it may sound
confusing at first, is quite workable. It
is unfortunate that the inbuilt editing
capabilities of Business BASIC are
inadequate, but this is a step up from any
inbuilt editing capabilities which I have
ever seen on any system.

Happy programming!

- Ill -

FIG FACTORY

Unclear Advertising

Dear Sirs:

A brief update on a Software program
called FIG FACTORY sold by SUN SOFTWARE,
P.O. Box 189, Tustin, CA 92680 for use
with an APPLE /// (advertisement is
attached).

To print hard copy from this product, the
company has informed me that you must have
either a Silentype Printer or a PKASO card
for your Apple ///. The company is
unwilling or unable to develop drivers for
other configurations (interface cards
and/or printers) and will not refund your
purchase price if you order the program
and subsequently discover this
information. Please advise your readers
as the advertising is not clear.

Sincerely,

Jack R. Scholl

Editor's Note: Advertisement referred to
made 0 reference to printer
requirements.

19

DATA MANAGER///

Evaluation by: Lloyd J. Brammer, CPA

Micro Lab
2310 Skokie Valley Rd.

Highland Park, Ill. 60035
(312) 433-7550

GENERAL

The following comments and observations
.come from having worked with Data Manager
Ill for only about a month.

- Program is now out in "preliminary
release" form

- Written in Apple Business Basic

- Program is on two diskettes, and the
user must build a third diskette to
boot the system by copying the SOS
files from a Business Basic or other
diskette containing the drivers and OS.

- Will run on a 128K Apple with floppy
drives, but Micro Lab recommends the
use of a 256K machine and a hard disk
to enjoy the program's full power (this
writer is using 128K and floppies).
Disk swapping is required on a 128K
machine because the program is too
large to fit on one disk.

DATA FILE CONSTRAINTS

- Can have 254 characters in each field

- Can have up to 200 fields per record

- Can have up to 32767 records per file
on a hard disk

- Can have multiple files on a hard disk,
depending on the storage capacity

VENDOR SUPPORT

Back up disks are not provided, but the
price of the package at $500 includes
Micro Lab's full one year warranty on the
software. They will replace blown disks
at no charge and will provide the user
during the warranty period any updates or
changes that are developed. This writer
has called Micro Lab with questions and
has written a couple of times. Response

20

from Micro Lab has been marginal.

FEATURES

- Can design multiple data entry screens
and save them to disk for any datafile.
If a record has 50 fields, for example,
and normal data update and maintenance
is needed on only 3 fields, a separate
screen can be designed to accommodate
data entry on only the 3 fields most
frequently needing change. The operator
would not need to look through all 50
fields to find the fields needing
change. Screens can be modified even
after saving to disk.

- Fields using real numbers or integers
can be protected so that alpha
characters cannot be entered where a
number is required.

- Output options include a "custom output
format." There are over 40 math and
manipulations commands available on the
custom output format, allowing an
almost unlimited combination of
calculations between fields and on
printout (but see further comments on
this under the PROBLEMS section).

- There is a simple printer output option
that allows quick printer formatting,
without math functions.

- The "reconfigure" routine allows the
transfer of data from one data file to
another data file, to an Applewriter
file, or to a Word Juggler file. All
records on the database may be
transferred, or it may be limited to
only those records meeting a specific
"search" criteria. Or, only certain
fields of selected records may be
transferred (such as a user might want
for transferring name and address
fields to an Applewriter file for mass
mailings).

- The program has multiple level sorting
capabi 1 i ty.

- With the "replace" routine, you can
replace the information in selected
records or act mathematically with the
record, all in one pass through the
file. For example, if a field
contained price information for 10,000
inventory items, a 10% price increase
could be entered by using the "replace"
routine to multiply the contents of the
field by 1.1 and then replace the old

field contents with the new price.

Seems that every conceivable search
criteria has been included. Lower
than, greater than, equal to, not equal
to, character string included,
character string not included, and
more. The search criteria can be
grouped so that multiple conditions
must be met before a record is
selected. The search also can be done
by comparing fields, so that, for
example, a record is selected only if
one field meets the criteria
established for comparison with another
field. The search criteria can be
saved to disk for repeated usage,
rather than having to reconstruct the
search specifications.

At any time from the main menu, a user
can check the "data file" info to see
how much room is left on the disk; or
to see what the field name, number, and
type is for the record format used in
the database.

Fields can be designated as "read only"
fields so that information contained in
the fields cannot be altered when
making modifications to the records (at
least without going through a separate
menu and routine to consciously make a
change in the format of the screen).

The user has total control of the
printed output. Each location to be
printed can be defined, so that the
printout can be in any form - columns,
rows, or on any format that may be
required with preprinted forms, such as
invoices, etc. Special titles and
headings (text constants) can be
included on the printout anywhere the
user wishes.

PROBLEM AREAS

The program has bugs. One bug which I
discovered early pertained to the
Reconfigure routines wherein a data
file can be transferred to another data
base or to Applewriter or Word Juggler
files. A record may have 200 fields,
but the Reconfigure option allowed only
the first 9 fields of any record to be
transferred. I called Micro Lab and
they gave me a programming change on
the phone to correct the problem so
that all fields could be transferred.
Other problems exist in the search
routines which result in "bad subscript

e~ror" messages. These bugs have been
pointed out to Micro Lab, but as yet
they have not responded.

A major deficiency in the custom output
routine sharply restricts the
usefulness of DATA MANAGER Ill's math
and manipulations programming. In
designing a check register with a view
toward getting a printout of checks
written with subtotals by account
number, I found that the results were
printed out in scientific notation. On
talking with Micro Lab on the problem,
they said that you can't get subtotals,
totals, or perform any of the math
routines in the custom output programs
when using LONG INTEGERS. The math
routines will only work with real
numbers. That means that a user can
only get 6 places of precision on
printout. A user could not have
individual checks, subtotals, or totals
which would exceed $9,999.99. For this
reason, DATA MANAGER Ill will have very
limited usefulness in a business
application and will even be limited in
home and hobby use. (There are many
less expensive programs on the market
that will handle search and sort
routines.) Micro Lab said there is
presently no intention of reprogramming
the custom output routines to solve the
problem. The manuals did not discuss
this limitation or warn the user about
it.

The manual is very brief and in some
places contradictory. For example, in
one section we are told that only one
database can be set up on a floppy
diskette, and in another place we are
told that we can set up more than one
database on a floppy. The tutorial in
the manual is not comprehensive enough
and gave no guidance in how to use the
subtotals and totals function and was
extremely brief in describing the math
and manipulations routines. Learning
the system for me took many hours of
experimentation (with much
frustration). On two occasions, I lost
about one third of the records entered
in the database, which, according to
Micro Lab, probably occurred because I
did not properly exit the system when
shutting down. The manuals contained NO
COMMENT on the importance of exiting
the system using the menu when shutting
down. Re-keying the lost records took
several hours.

21

- Printer format setup is very time
consuming, because every print location
is determined by the user. Also, the
printing is very slow. It took
approximately 2 114 hours to print out
a floppy disk that was 80% full,
without using any of the math routines
on the output.

SUMMARY

DATA MANAGER Ill has some powerful
features and it has the potential to be a
very useful package. However, the program
bugs, such as the inability to use
subtotals, totals, and math functions with
long integers, and the relatively poor
manuals prompts me to warn "buyer beware."

- Ill -

Problems with PFS Ill: File

There is also a problem with PFS: File for
the Apple Ill in version B:01. With very
large files, like those you have to put on a
Profile, file linkages can get damaged.
This will be evidenced by not being able to
find a record on a search on the first
field, normally a very fast operation, but
that record will be found on a sequential
search. Note this is a linkage within the
PFS file structure, not the SOS file
structure.

This is corrected in version B:02 which is
being released with SOS 1.3 in the near
future, probably by the time you read this.

Note that you can check the version of your
PFS: FILE or REPORT by entering a V for the
selection number on the main menu and then
pressing Enter (not Return).

Reprinted from HAAUG Apple Barrel.

- Ill -

Updates for Access Ill and Quickfile

Access Ill has been updated to version 1.1.
Quickfile is now at revision B. If you
don't have these revisions see your Apple
dealer to have your disks updated.

Reprinted from HAAUG Apple Barrel.

- Ill-

22

NEW CLOCK-ON-A-CHIP KIT FOR APPLE Ill

Reviewed by: Fred Winkenpaw

When the Apple Ill was first introduced it
was heralded as having many options
built-in to the computer that would
normally require the use of extra
peripheral slots in the Apple II. These
built-in features included a disk drive
and controller for up to 4 drives the
capability of installing up to 256k RAM on
the main board (with theoretical
expansion to 512k), an RS-232C
asynchronous serial communications port,
~wo a~alog IIO ports (for gamepaddles,
JO~st1cks, etc.) with port A doubling as a
pr1nter port fo~ the Silentype, and an
on-board real-t1me clock.

W~ll, as some of you may know, Apple had a
b1t of trouble when they first released
the Apple Ill; after some trials and
tribulations the problems were all worked
out exce~t ~or the promised clock. Apple
had cont1nu1ng problems with their clock
chip and finally stopped all production
and advertising for the clock capabilities
of the Apple 111.

Apple however, has continued to provide
for the possibility of a clock in the
Apple 111. SOS (the Apple Ill operating
system) has built-in provisions for
accessing a clock, as well as Business
Basic which uses time$ and date$ to access
timekeeping functions of a clock. So, how
can you take care of time-keeping
functions in your Apple Ill? The 6502 CPU
has an ability to keep track of time but
it must be set every time you turn o~ the
comput:r. Some people have adapted
real-t1me clock cards designed for the
Apple][(such as the Thunderclock) and
retrofitted them for use with the Apple
111. This method creates the problem of
needing special S.O.S. "drivers" (machine
code instructions) to access the
peripheral card since it was not designed
for the Apple 111. The card also uses up
one of the valuable 4 slots in the Apple
Ill and the cards are quite expensive
costing several hundred dollars .
Apple provided an empty socket on the
board of the Ill for a clock chip, but so
far Apple has not come out with a chip of
their own.

However, an innovative company in San
Francisco called APEX has introduced an
inexpensive clock-chip kit for the Apple
Ill that plugs into the main board, has
battery back-up, and is totally software
compatible with S.O.S., Business Basic,
Pascal, and other languages. All that is
necessary is the simple installation of
the chip and connection of the battery
unit and your Apple ///will be able to
tell time, and remember the date. The
chip provides full clock and calendar
functions, and works without any further
modification. From then on, all your
S.O.S. files will be dated and timed; when
using the system utilities (and other
programs that provide this feature) the
time and date will be displayed in the
upper right-hand corner of the screen.
The kit comes with complete installation
instructions with diagrams, and does not
violate the warranty of the computer since
it does not require any soldering on the
main board. The installation with these
detailed intructions is greatly
simplified.

The product is called the "Clock/// Kit"
and is available for a special price of
$60.00 plus $2.00 shipping charges from:

APEX Information Systems, Inc.
PO Box 11109
San Francisco, CA 94101
(415) 885-1633

- Ill -

Making a Turnkey CP/M Program Disk

When you first receive a CP/M product such
as the Palantir Word Processor, the disk
likely does not contain the CP/M system and
will not boot up running the application
program. Three steps are required to make
the program disk boatable. First, you
should duplicate the disk for safety's sake.
With the CP/M system disk in Drive A: (the
built-in one) type (don't type the "A>" CP/M
prompt):

A>COPY B:=A:

When prompted, insert the program disk in
Drive A:, insert the blank disk in Drive B:,
and press return. This will cause the blank
disk to be formatted and the contents of the
program disk to be duplicated on Drive B:.

Next place the CP/M system disk in Drive A:
and transfer CP/M to the new program disk by
typing the following command:

A>COPY B:=A:/S

Next transfer the file TURNKEY.COM from the
CP/M system disk to the program disk by
typing :

A>PIP B:TURNKEY.COM=A:TURNKEY.COM

Finally, set up the disk to automatically
boot the desired program by typing the
following:

A>B:TURNKEY filename

Where filename is the name of the COM file
containing the program to be run on bootup.

Reprinted from HAAUG Apple Barrel.

- Ill -

PFS to the RESCUE

A Rescue program for PFS files is being
released soon to dealers. This program will
copy every block on a disk that appears to
have valid data in it. It will run on an
Apple/// but will work on PFS files for
both the Apple][and the Apple///.

Reprinted from HAAUG Apple Barrel.

- Ill -

23

opczn a~plcz D(J
CJCIZC!~tcz lQj

PO BOX 813 SAN FRANCISCO 94101

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024

